2022
06/30
相关创新主体

创新背景

生物光伏作为新的光电转化方式具有低碳、环保、低成本等诸多优点,但因为藻类等微生物光和作用产生的电流微弱,产电活力较低,电流供应智能用于微小设备。想要发展生物电伏,促进能源利用和光电转化,提高其产电活力迫在眉睫。

 

创新过程

2019年,针对生物光伏光电转化率的问题,中科院微生物所李寅研究组设计创建一个合成微生物组,具有定向的电子流,可以用来提高藻类的产电活力。

研究人员表示,蓝藻吸收光能并固定二氧化碳,合成能量载体d-乳酸,希瓦氏菌氧化d-乳酸进行产电,由此形成一条从光子到d-乳酸再到电能的定向电子流,完成从光能到化学能再到电能的能量转化过程,帮助克服藻类产电活力低的问题,提高光电转化效率。

合成微生物组由一个工程蓝藻和一个希瓦氏菌组成。希瓦氏菌与金属和矿物接触时会产生电流,可用于无法获取太阳能的地下环境,提高产电活力。d-乳酸是经生物发酵技术生产的具有高旋光性的乳酸,应用于聚乳酸材料的加工制造以及农药中间体的合成。在合成微生物组中作两种微生物间的能量载体,帮助工程蓝藻存储光能和让希瓦氏菌与之兼容。

合成微生物组中两种微生物的兼容,借助能量载体,通过对遗传、生存环境和装置的设计改造来完成。由此创建的双菌生物光伏,能够实现高效、稳定的功率输出,比目前的生物光伏功率最大化提高十倍。此外,研究组采用连续流加培养方式,使双菌生物光伏系统稳定输出40天以上的功率,且输出功率均达到目前生物光伏系统的最高水平。

合成微生物开发生物光伏系统提高了生物媒介的光电转化效能,为光能生物利用提高了效率,促进能源转化方式拓展和微生物利用发展。

 

创新关键点

以d-乳酸为媒介合成蓝藻和希瓦氏菌提高生物光伏光电转化率。

 

The synthetic microbiome strengthens the electricity-producing vitality of bioPV

In 2019, in response to the problem of the photoelectric conversion rate of biophotovoltaics, Li Yin's research group from the Institute of Microbiology, Chinese Academy of Sciences designed and created a synthetic microbiome with directional electron flow, which can be used to improve the electricity production activity of algae.
The researchers said that cyanobacteria absorb light energy and fix carbon dioxide to synthesize energy carrier d-lactic acid. Shewanella oxidizes d-lactic acid to generate electricity, thereby forming a directional electron flow from photons to d-lactic acid and then to electricity. The energy conversion process from light energy to chemical energy to electrical energy can help overcome the problem of low algae production activity and improve the efficiency of photoelectric conversion.
The synthetic microbiome consists of an engineered cyanobacteria and a Shewanella. Shewanella produces electricity when it comes into contact with metals and minerals, which can be used in underground environments where solar energy cannot be obtained to increase the vitality of electricity production. d-lactic acid is lactic acid with high optical activity produced by biological fermentation technology. It is used in the processing and manufacture of polylactic acid materials and the synthesis of pesticide intermediates. Acting as an energy carrier between two microorganisms in a synthetic microbiome, helping engineered cyanobacteria to store light energy and making Shewanella compatible with it.
The compatibility of the two microorganisms in the synthetic microbiome is accomplished through the design and modification of genetics, living environment and devices with the help of energy carriers. The dual bacteria biophotovoltaic thus created can achieve high-efficiency and stable power output, which is ten times higher than the current biophotovoltaic power. In addition, the research group adopted the continuous feeding method, so that the double bacteria biophotovoltaic system can stably output power for more than 40 days, and the output power has reached the highest level of the current biophotovoltaic system.
The development of biophotovoltaic systems by synthetic microorganisms improves the photoelectric conversion efficiency of biological media, improves the efficiency of light energy bioutilization, and promotes the expansion of energy conversion methods and the development of microbial utilization.

智能推荐

  • 创新开发新型超薄光伏材料

    2022-08-16

    斯坦福大学科学家开发了新型太阳能材料,可能会带来超薄、轻质的太阳能电池板。

    涉及学科
    涉及领域
    研究方向
  • 预测模型实现风力发电的最优控制策略,提升输出功率

    2022-08-14

    这项研究使用最先进的基于物理的尾流模型,辅以数据驱动方法,智能实现偏航控制策略,可以增加风力发电厂的输出功率,提供了在高度可变的风能资源下有效控制风力涡轮机的新方法。通过减少尾流损失,该算法可以在未来的风力发电场中使涡轮机更紧密地连接在一起,从而增加风能的功率密度,节省陆地(或海洋)足迹。同时,这种功率密度的增加和足迹的减少有助于实现温室气体减排目标。

    涉及学科
    涉及领域
    研究方向
  • 新能源 | 新英格兰和加拿大两国之间的电力流动为减排提供新思路

    2022-08-16

    麻省理工学院能源与环境政策研究中心(CEEPR)的研究团队研究了魁北克省水电资源在新英格兰未来低碳系统中的潜在作用和经济价值,为完成减排目标提供了建议,同时提出了关于无碳电力系统间歇性问题的解决方案。

    涉及学科
    涉及领域
    研究方向
  • 2021年CES展会 | 利用阳光和空气制造饮用水的新型水能板

    2022-09-08

    涉及学科
    涉及领域
    研究方向