2022
07/27
相关创新主体

创新背景

Cre-loxP是一种位点特异的基因重组技术,被广泛应用于特异位点的基因敲除、基因插入、基因翻转和基因易位,在真核生物和原核生物中均有广泛应用。
基于Cre-loxP的基因打靶要分两步来进行。首先要在胚胎干细胞的基因组中引入loxP序列,这一步可以通过打靶载体的设计和对同源重组子的筛选来实现。下一步通过Cre介导的重组来实现靶基因的遗传修饰或改变。Cre-loxP系统既可以在细胞水平上用Cre重组酶表达质粒转染中靶细胞,通过识别loxP位点将抗性标记基因切除,又可以在个体水平上将重组杂合子小鼠与Cre转基因小鼠杂交,筛选子代小鼠就可得到删除外源标记基因的条件性敲除小鼠。或者将Cre基因置于可诱导的启动子控制下,通过诱导表达Cre重组酶而将loxP位点之间的基因切除(诱导性基因敲除),实现特定基因在特定时间或者组织中的失活。

CRISPR-Cas9基因编辑技术就是通过人工设计的 sgRNA(guide RNA)来识别目的基因组序列,并引导 Cas9 蛋白酶进行有效切割 DNA 双链,形成双链断裂,损伤后修复会造成基因敲除或敲入等,最终达到对基因组DNA 进行修饰的目的。
CRISPR-Cas9基因编辑技术被广泛应用于基因敲除(Knock-out)、基因敲入(Knock-in)、基因抑制或基因激活(Repression or Activation)、多重编辑(Multiplex Editing)、功能基因组筛选等。

 

创新过程

2022年7月22日,上海科技大学生命学院池天课题组在 Cell 期刊在线发表了题为:Large-scale multiplexed mosaic CRISPR perturbation in the whole organism 的研究论文,报道了一种崭新的小鼠基因打靶技术——iMAP(inducible Mosaic Animal for Perturbation),快速鉴定了90个基因在39种组织的基本功能,构建了世界首张小鼠“扰动图谱”。

早在2001年,国际人类基因组计划就公布了人类基因组序列。但目前为止,约2万个哺乳动物蛋白编码基因在500多种细胞中的功能仍鲜为人知。
要解码这些基因的细胞特异性功能,必须将其分别在各种细胞中敲除(扰动)再鉴定其细胞表型,即描绘 “扰动图谱”。但用传统的基因打靶方法,无法快速有效地描绘扰动图谱,成为功能基因组学领域久攻不下的瓶颈。

池天课题组里程碑式的成果为突破上述瓶颈、系统性解码全部基因在各种细胞中的功能,迈出了关键一步。

iMAP融合了Cre-loxP和CRISPR-Cas9技术,其核心组成部分是一个转基因序列,它由U6启动子和下游一串gRNA表达单位构成。转基因通常只表达第⼀个sgRNA,而利用药物(他莫昔芬)激活Cre,导致转基因重组,可使其余的sgRNA也得以表达,但每个细胞只随机表达其中⼀个。这些sgRNA可在Cas9的帮助下敲除相应的靶基因,从而将小鼠转化为嵌合体。利用这种嵌合体,可同时鉴定多个基因分别在多种细胞里的功能,也可衍生出多种传统的单基因敲除品系用于后续实验。

研究团队首先构建了一个iMAP品系,它携带61个gRNA 表达单位,共靶向6个功能已知的标志基因。该品系证明了iMAP的鲁棒性,包括展示转基因起码能稳定传13代。随后构建的iMAP品系携带100个gRNA表达单位,靶向90个功能不甚清晰的基因,以此构建了一个微型扰动图谱,揭示了这90个基因分别在39个组织/细胞中对细胞存活、扩增、分化的影响。

研究团队还进一步通过简单的配繁,从iMAP鼠衍生出多个传统的单基因敲除品系,证明了iMAP 的另一重要用途。

 

创新关键点

研究团队提出了一种崭新的小鼠基因打靶技术——iMAP,其iMAP品系携带100个gRNA表达单位,靶向90个功能不甚清晰的基因,以此构建了一个微型扰动图谱,揭示了这90个基因分别在39个组织/细胞中对细胞存活、扩增、分化的影响。

 

智能推荐

  • 生理学创新 | 构建“纳米结构”来操纵合成脂质体以促进细胞交流

    2022-09-22

    科学家们已经研究出了如何最好地让DNA与我们体内的细胞膜进行通信,这为在液滴中创建“迷你生物计算机”铺平了道路,这种计算机在生物传感和mRNA疫苗方面有潜在用途。

    涉及学科
    涉及领域
    关键词 
  • 研究发现PIEZO1 功能获得性基因突变增强肌腱组织性能

    2022-07-02

    美国 Scripps 研究所 Hiroshi Asahara 教授团队与2021年诺贝尔生理学或医学奖得主Ardem Patapoutian 教授团队合作,通过小鼠研究发现,肌腱中机械敏感离子通道 PIEZO1 的功能获得性突变能使动物跳得更高,跑得更快。人类中的类似突变可能与更好的运动表现有关。

    涉及学科
    涉及领域
    关键词 
  • 利用“扩展显微镜”技术揭示细胞和组织中隐藏的纳米结构

    2022-08-30

    麻省理工学院的研究人员利用“扩展显微镜”技术,开发了一种被称为“扩展揭示”的新方法,首次使以往“隐藏”的纳米结构可视化。

    涉及学科
    涉及领域
    关键词 
  • 生命科学 | 研究发现控制小鼠胡须有节奏抖动的抑制性神经元

    2022-09-01

    研究团队发现了一种由所有抑制性神经元组成的哺乳动物网络振荡回路,它能够控制老鼠胡须有节奏运动。这是首次在哺乳动物中完全确定这种振荡器的特征。

    涉及学科
    涉及领域
    关键词